Превышен лимит товаров для текущего тарифного плана

Ремонт трансформаторов силовых ТМ,ТМГ,ТМЗ,ТС,ТСЗН Лучшая Цена

Ремонт трансформаторов силовых ТМ,ТМГ,ТМЗ,ТС,ТСЗН Лучшая Цена

1. Общие сведения о трансформаторах и их ремонте

Трансформатор — это статическое электромагнитное устройство с несколькими индуктивно связанными обмотками, предназначенное для преобразования посредством электромагнитной индукции переменного тока одного напряжения в переменный ток другого напряжения. Передача электрической энергии с одной обмотки трансформатора на другую осуществляется с помощью электромагнитного поля. Различают силовые и измерительные трансформаторы.
Силовой трансформатор используется для преобразования электрической энергии при нeпocpeдcтвeннoм питании приемников энергией высокого или низкого напряжения неизменной частоты. Стандартными номинальными линейными напряжениями электрических сетей переменного тока до 1000 В являются (ГОСТ 21128-83): 6, 12, 27, 40, 60, 110, 120, 220, 380, 660 В, выше 1000 В (ГОСТ 721-77): 6, 10, 20, 35, 110, 220, 330, 500, 750, 1150 кВ. Передача электрической энергии на большие расстояния осуществляется, как известно, при высоких напряжениях с целью уменьшения потерь в   сетях и сечения проводов линий электропередач. В местах потребления электроэнергии ее напряжение с помощью трансформаторов понижается до требуемого значения.
Силовые трансформаторы бывают общего назначения (для питания обычных сетей или электроприемников) и специального назначения (для питания сетей или электроприемников, отличающихся особыми условиями работы, характером нагрузки или режимом работы, например промышленных электротермических печей по выплавке стали и других металлов, преобразовательных установок переменного тока в постоянный, электровозов на железнодорожном транспорте и др.). К специальным силовым трансформаторам относятся сварочные трансформаторы.

Силовые трансформаторы разделяют на масляные, у которых обмотки вместе с магнитной системой погружены в бак с трансформаторным маслом для улучшения изоляции токоведущих частей и условий охлаждения трансформатора, и сухие, для которых охлаждающей средой служат воздух, газ и твердый диэлектрик.
В электрических сетях применяются также и автотрансформаторы. У них первичная и вторичная обмотки, в отличие от обычных силовых трансформаторов, наряду с электромагнитной связью соединены между собой и гальванически.
Устройство силового масляного трансформатора
Рис. 1. Устройство силового масляного трансформатора мощностью 1000 — 6300 кВ-А напряжением 35 кВ: 1 — бак; 2 — вентиль; 3 — болт заземления; 4 — термосифонный фильтр; 5 — радиатор; 6 — переключатель; 7 — расширитель; 8 — маслоуказатель; 9 — воздухоосушитель; 10 — выхлопная труба; 11 — газовое реле; 12 — ввод ВН; 13 — привод переключающего устройства; 14 — ввод НН; 15 — подъемный рым; 16 — отвод НН; 17 — остов; 18 — отвод ВН; 19 — ярмовые балки остова (верхняя и нижняя); 20 — регулировочные ответвления обмоток ВН; 21 — обмотка ВН (внутри HH); 22 — каток тележки

Масляный трансформатор ТМ (рис. 1) состоит из магнитопровода с размещенными на нем обмотками высокого напряжения (ВН) и низкого напряжения (НН), бака и крышки с вводами. Выводы обмоток ВН и НН, изоляторы смонтированы на крышке, которая крепится к баку болтами и уплотняется прокладкой из маслостойкой резины. На крышке также расположены колпак привода переключателя и расширитель. Для перемещения при монтаже и ремонте трансформатор снабжен стальными катками.
Магнитопровод набирают из изолированных между собой (для уменьшения потерь от вихревых токов) листов холоднокатаной электротехнической стали толщиной 0,35 - 0,5 мм. В качестве межлистовой изоляции чаще всего применяют лаки, которые после нанесения на металл и запекания образуют пленку с высокими изоляционными свойствами, механически прочную и маслостойкую.
Обмотки выполняют из медного или алюминиевого провода круглого либо прямоугольного сечения. В качестве изоляции проводов используют телефонную или кабельную бумагу и хлопчатобумажную пряжу.
Переключатель служит для изменения числа витков первичной обмотки, а следовательно, коэффициента трансформации при регулировании в определенных пределах вторичного напряжения трансформатора. Так, трансформаторы мощностью до 1000 кВ-А имеют три ступени регулирования напряжения в пределах ±5%, трансформаторы мощностью более 1600 кВ-А — пять ступеней регулирования в тех же пределах.
В баке трансформатора находятся магнитопровод с обмотками и трансформаторное масло. Трансформаторы небольшой мощности имеют гладкостенные баки, в трансформаторах мощностью более 40 кВ-А к баку приваривают циркуляционные трубы в один или несколько рядов (трубчатые баки). Существуют также ребристые баки (с вертикальными ребрами для охлаждения воздухом). Трансформаторы большой мощности обеспечивают съемными радиаторами. В верхней части бака приварены крюки для подъема трансформатора, а внизу бак имеет болт для заземления и маслосливной кран.
Расширитель представляет собой сварной стальной цилиндр, закрепленный на кронштейнах и соединенный с баком патрубком. Уровень масла в расширителе контролируется указателем уровня в виде трубки или прозрачной вставки. В верхней части расширителя имеется отверстие для заливки масла, которое закрывается пробкой с резьбой. Для свободной циркуляции воздуха установлена дыхательная труба, нижний торец которой защищен крышкой с отверстием и сеткой. Вместе с воздухом в расширитель (а следовательно, и в масло) могут попадать частицы пыли и грязи, а также пары влаги, которые конденсируются на его стенках. Для удаления загрязненного масла и влаги имеется отстойник с пробкой. Температуру масла в трансформаторе контролируют ртутным термометром или термометрическим сигнализатором.

Сухой трансформатор состоит из магнитопровода, обмоток ВН и НН, заключенных в защитный кожух.
Трехфазные трансформаторы выполняются с различными схемами и группами соединения обмоток (рис. 2). Группой соединения называют угловое смещение векторов линейных напряжений обмотки НН по отношению к векторам соответствующих линейных напряжений обмотки ВН. Группа соединения обозначается числом, которое, будучи умноженным на 30° (угловое смещение, принятое за единицу), дает угол отставания в градусах; число 11 означает отставание 330°, а 0 или 12 — отставание 0° (векторы линейных напряжений обмоток ВН и НН совпадают). Если направление вектора линейного напряжения обмотки ВН принять за направление минутной стрелки часов, а направление вектора линейного напряжения обмотки НН — за направление часовой стрелки, то группа 0 (по старому стандарту эта группа обозначалась цифрой 12) будет соответствовать совпадению стрелок — двенадцати часам.
Для уменьшения потерь трансформаторы включают на параллельную работу, когда их одноименные выводы на первичной и вторичной сторонах соединены между собой. При этом необходимо соблюдать следующие условия: одинаковые группы соединения обмоток, равенство коэффициентов трансформации и напряжений короткого замыкания. Напряжение короткого замыкания трансформатора — это напряжение (в процентах номинального), которое необходимо подать на одну из обмоток, чтобы по ней проходил ток, соответствующий номинальной мощности, при замкнутой накоротко второй обмотке. Не рекомендуется параллельная работа трансформаторов, если отношение номинальных мощностей более 3:1.
В электроустановках кроме силовых применяются измерительные трансформаторы: трансформаторы тока и трансформаторы напряжения.
Трансформатор тока (ТТ) предназначен для снижения тока первичной линии до значения, при котором наиболее целесообразно осуществлять питание (подключение) соответствующих измерительных приборов, устройств релейной защиты, автоматики, сигнализации и управления. Наличие ТТ позволяет устанавливать измерительные приборы на значительных расстояниях от контролируемых линий.
Трансформаторы напряжения (ТН) похожи на силовые трансформаторы и предназначены для питания цепей напряжения различных измерительных приборов и реле (рис. 3).
При ремонте трансформаторов необходимо особое внимание уделять изоляционным работам, так как надежность трансформаторов в эксплуатации определяется в основном качеством изоляции.

. Схема включения в сеть трансформатора напряжения ТН

Рис.3 Схема включения в сеть трансформатора напряжения ТН

Наиболее часто в трансформаторах повреждаются обмотки ВН, реже НН. Повреждения в основном происходят из-за снижения электрических свойств изоляции на каком-нибудь участке обмотки, в результате чего наступает электрический пробой изоляции между витками и их замыкание, приводящее к выходу трансформатора из строя.
Повреждение внешних деталей трансформатора (расширителя, бака, арматуры, вводов, пробивного предохранителя) можно обнаружить при внимательном осмотре, а внутренних — в результате испытанийСначала трансформатор очищают от грязи, а затем внимательно осматривают его снаружи с целью выявления внешних неисправностей: трещин в армировочных швах, сколов фарфора вводов, нарушений сварных швов и протекания масла из фланцевых соединений, механических повреждений циркуляционных труб, расширителя и других деталей. Обнаруженные неисправности записывают в дефектировочные карты.
Перед разборкой из трансформатора сливают (частично или полностью) масло. Частично (до уровня верхнего ярма магнитопровода) масло сливают, если ремонтные работы выполняются без подъема активной части трансформатора (например, при замене вводов, ремонте контактов переключателя) или с ее подъемом, но на время, не превышающее допустимое время пребывания обмоток трансформатора без масла. Полностью масло сливают, если необходима сушка активной части трансформатора или в случаях, требующих замены поврежденных обмоток или замены масла при его непригодности для дальнейшего использования из-за загрязнения и увлажнения.
Последовательность разборки трансформатора зависит от его конструкции. Рассмотрим основные операции разборки и ремонта трансформаторов большого диапазона мощностей и различного конструктивного исполнения.
Разборку начинают с демонтажа газового реле, предохранительной трубы, термометра, расширителя и других устройств и деталей, расположенных на крышке трансформатора. При демонтаже газового реле под него подкладывают деревянную планку шириной 200 мм или резиновую пластину толщиной около 10 мм. Затем отвертывают болты крепления (придерживая реле рукой) и, перемещая корпус реле параллельно фланцам, снимают его. Отверстия реле закрывают листами фанеры или картона и закрепляют освободившимися болтами. Реле аккуратно кладут на стеллаж или передают в электролабораторию для испытаний и ремонта.
Расширитель демонтируют в следующем порядке: снимают с него маслопровод с краном, стекло маслоуказателя закрывают временным щитком из фанеры, привязав его к арматуре маслоуказателя веревками; стропят расширитель пеньковым или стальным стропом (в зависимости от массы) и отвертывают крепежные болты; устанавливают наклонно две доски и по ним опускают расширитель на пол; закрывают отверстия в крышке и расширителе временными фланцами из листовой резины, фанеры или картона во избежание попадания в них грязи и влаги.
Далее демонтируют крышку трансформатора, при этом освободившиеся болты укомплектовывают шайбами и гайками, смачивают керосином и хранят в металлической таре до сборки.
Для подъема активной части трансформатора применяют специальные приспособления и стропы, рассчитанные на массу поднимаемого груза и прошедшие необходимые испытания. При подъеме активной части трансформатора с вводами, расположенными на стенках бака, сначала отсоединяют отводы, демонтируют вводы и только затем поднимают активную часть. При этом, когда крышка будет приподнята над баком на 200 - 250 мм, подъем временно прекращают, чтобы убедиться в отсутствии перекоса поднимаемой активной части, который может привести к повреждению обмоток. Если обнаружится перекос, активную часть опускают на дно бака и снова поднимают только после его ликвидации. В начале подъема рекомендуется убедиться в исправности грузоподъемного механизма, для чего необходимо поднять активную часть на 50 - 200 мм над уровнем дна бака и держать ее на весу в течение 3-5 мин, затем продолжить подъем. Подняв активную часть над баком не менее чем на 200 мм, бак удаляют. Стоять под активной частью или в опасной близости от нее, а также производить ее осмотр категорически запрещается.
Активную часть, поднятую из бака, устанавливают на прочном помосте из досок или брусков так, чтобы обеспечить ее устойчивое вертикальное положение и возможность осмотра, проверки, ремонта.
Продолжая разборку, отсоединяют отводы от вводов и переключателя, проверяют состояние их изоляции, армировочных швов ввода и контактной системы переключателя (все неисправности записывают в дефектировочную карту). Затем отвертывают рымы с вертикальных шпилек, снимают крышку и укладывают так, чтобы не повредить выступающие под крышкой части; вводы закрывают цилиндрами из картона или обертывают мешковиной.
Основные операции по демонтажу обмоток выполняют в такой последовательности: удаляют вертикальные шпильки, отвертывают гайки стяжных болтов и снимают ярмовые балки магнитопровода, связывая и располагая пакеты пластин по порядку, чтобы удобнее было их затем шихтовать. Далее разбирают соединения обмоток, удаляют отводы, извлекают деревянные и картонные детали расклиновки обмоток ВН и НН и снимают обмотки вручную или с помощью подъемного механизма (обмотки трансформаторов мощностью 100кВ-А и выше) сначала ВН, а затем НН.
При дефектировке обмоток для определения мест витковых замыканий используют комплект специальных приборов. После дефектировки поврежденные обмотки доставляют в обмоточное отделение, а расширитель, переключатель, вводы и другие детали трансформатора, требующие ремонта, — в отделение ремонта электромеханической части.

При ремонте обмоток с поврежденной изоляцией (в результате электрического пробоя или износа) целесообразно использовать повторно провод обмоток после его переизолировки. Процесс переизолировки заключается в отжигании его в печи (при температуре 550 - 600°С), промывке в горячей воде и покрытии новой изоляцией на оплеточных станках или специальными приспособлениями на обычном токарном станке. В качестве изоляционных материалов применяют хлопчатобумажную (шелковую, стеклянную, из химических волокон) пряжу высоких номеров (Л-» 60 и более), ленты из кабельной или телефонной бумаги шириной 10 - 25 мм, толщиной 0,05 - 0,12 мм. При правильном выполнении операций переизолированный обмоточный провод по своим качествам будет равноценен новому.
Обмотки, имеющие небольшой участок повреждений проводов (оплавление или выгорание) и изоляции, в некоторых случаях ремонтируют только частичной перемоткой. Однако при таком ремонте возникают трудности с удалением поврежденной части обмотки и намотки новых секций. Кроме того, продолжительность работы трансформаторов с частично перемотанными обмотками в 2 - 3 раза меньше, чем трансформаторов с полностью перемотанными обмотками.
Намотку новых обмоток выполняют по образцам поврежденных обмоток на специальных намоточных станках, оснащенных шаблонами, натяжными приспособлениями и стойками с натяжными устройствами для барабанов с обмоточным проводом. Перед ремонтом, пользуясь чертежами, дефектировочной, маршрутной и технологической картами, подготавливают необходимые изоляционные и проводниковые материалы и инвентарные приспособления, а также рабочие и измерительные инструменты.
При изготовлении, сборке и монтаже обмоток в качестве изоляционных материалов применяют бумагу (кабельную, телефонную), электротехнический картон и деревянные детали, а также изоляционные конструкции из этих материалов.
Провод обмотки обычно наматывают на бумажно-бакелитовый цилиндр; кабельную и телефонную бумагу используют чаще всего в качестве межслойной изоляции, картон — в виде прокладок и штампованных или клееных изоляционных деталей, а изоляционные конструкции — как уравнительную и ярмовую изоляцию.
Изготовленную обмотку стягивают с помощью круглых стальных плит и шпилек (чтобы обмотка не рассыпалась при транспортировке к месту выполнения очередной технологической операции) и отправляют на сушку. Она повышает качество обмотки и продолжительность ее работы в результате удаления влаги из бумажной изоляции, которая резко снижает электрическую прочность и срок ее службы.
Обмотки на напряжение до 35 кВ сушат при температуре до 105 °С в обычных сушильных камерах с вытяжной вентиляцией и электрическим или паровым подогревом, а на напряжение 35 кВ и выше — в вакуумных сушильных камерах.
После сушки обмотку сжимают с помощью гидропресса без снятия плит, пока ее размер по оси не достигнет требуемого. Затем проверяют другие размеры обмотки, ликвидируют (с помощью клиньев) наклон катушек, обрезают выступающие части реек и клиньев, выявляют и ликвидируют другие дефекты обмотки, появившиеся в процессе намотки, сушки или прессовки.
Готовую обмотку подвергают различным проверкам и испытаниям с целью определения ее качества.
Затем обмотку направляют в сборочное отделение или устанавливают в специальную рамку и хранят в сухом и отапливаемом помещении.

4. Ремонт магнитопроводов

Магнитопроводы требуют чаще всего частичного ремонта, реже — ремонта с полной разборкой и перешихтовкой активной стали.
Частичный ремонт выполняют при небольших повреждениях изоляционных деталей, ослаблении крепления ярмовых балок и т. п.
Места прогара и оплавления активной стали зачищают, снимая наплывы металла карборундовым камнем, насаженным на вал электросверлильной машинки, или вырубая зубилом. Затем на этих местах распрессовывают пластины магнитопровода, отделяют сваренные пластины, снимают заусенцы и, очистив участки от остатков старой изоляции и металлических опилок, изолируют пластины, прокладывая между ними листы телефонной или кабельной бумаги.
Часто в магнитопроводах бывают полностью повреждены бумажно-бакелитовые трубки, изолирующие стяжные шпильки от активной стали. В этих случаях изготавливают новые трубки.
Необходимость ремонта с полной разборкой и перешихтовкой возникает при таких тяжелых повреждениях, как "пожар стали". В этом случае может выйти из строя значительная часть пластин активной стали магнитопровода и изоляционных деталей. При таких повреждениях ремонт магнитопровода состоит из следующих основных операций: подготовка к ремонту; разборка магнитопровода; очистка и изоляция пластин; изготовление изоляционных деталей; сборка.

Переключающее устройство предназначено для изменения числа витков первичной (или вторичной) обмотки трансформатора и, следовательно, коэффициента трансформации для регулирования вторичного напряжения трансформатора. На рис. 4 приведена принципиальная электрическая схема трехступенчатого переключателя (положение переключателя соответствует номинальному напряжению во вторичной обмотке трансформатора).
схема трехступенчатого переключателя коэффициента трансформации трансформатора

Рис. 4. Принципиальная электрическая схема трехступенчатого переключателя коэффициента трансформации трансформатора

Если рукоятку переключателя повернуть на 120° по часовой стрелке, в первичной обмотке число витков уменьшится, а вторичное напряжение увеличится на 5%. При повороте переключателя в обратную сторону вторичное напряжение уменьшится также на 5 %.
При ремонте переключающих устройств особое внимание уделяют состоянию их контактной системы. Причиной выхода из строя трансформаторов в десяти случаях из ста бывает неисправность переключающих устройств, в частности повреждение их контактов. Неисправности в контактной системе переключающего устройства: недостаточная плотность прилегания подвижных контактов к неподвижным; ослабление соединений регулировочных отводов к контактам переключающего устройства; нарушение прочности соединений отводов с обмоткой и др. Эти неисправности вызывают повышенные местные нагревы, часто приводящие к выходу трансформатора из строя.
В трансформаторах применяются переключающие устройства ПБВ (переключение без возбуждения) и РПН (регулирование под нагрузкой).
переключатель ТПСУ
Рис. 5. Переключатель ТПСУ: Рис. 6. Контактная система переключателя ПБВ типа ТПСУ

1 — неподвижный контакт; 2 — подвижный сегментный контакт; 3, 4 — бумажно-бакелитовые трубка и цилиндр; 5 — болт; 6 — крышка бака трансформатора; 7 — металлический фланец; 8 — стопорный болт; 9 — колпак привода

Большинство силовых трансформаторов выполняется с устройством ПБВ различных конструкций, однако основным их элементом является система подвижных и неподвижных контактов. Например, в трансформаторах напряжением 6 или 10 кВ применяют переключатель ПБВ типа ТПСУ (рис. 5). Рабочее положение переключателя фиксируется стопорным болтом, который необходимо открутить, перед тем как повернуть переключатель. На фланце переключателя цифрами помечены положения, а на колпаке имеется стрелка, показывающая положение контактной системы. На рис. 6 приведена контактная система переключателя ПБВ типа ТПСУ. На бумажно-бакелитовом цилиндре 1 закреплены неподвижные контакты 3 с болтами 2 для подключения отводов. Подвижные контакты 5 сегментного типа установлены на валу 4 и прижаты пружинами к неподвижным контактам. Нижний валик б, вал 4 и контакты (сегменты) 5 приводятся в действие (поворачиваются) с помощью рукоятки колпака.

Переключающие устройства РПН выполняются с токоограничивающим реактором, токоограничивающими сопротивлениями и без них. На рис. 7 приведено переключающее устройство РПН с реактором. РПН состоит из избирателя отводов Ai - А„ обмотки 1, контакторов для отключения тока в цепях переключающего устройства, реактора или сопротивлений, с помощью которых ограничивается ток в переключаемой части обмотки во время перевода тока нагрузки с одного отвода на другой без разрыва цепи тока нагрузки трансформатора. Кроме этого, переключающие устройства могут иметь ручной привод, электрический с кнопками управления или автоматический, а также элементы автоматики и сигнализации.
Переключающее устройство РПН с токоограничивающим реактором
Рис. 7. Переключающее устройство РПН с токоограничивающим реактором: а — электрическая схема (одной фазы); б — расположение в трансформаторе устройства РПН типа РНТ-13-623/35

Электрическая схема каждой фазы устройства РПН (рис. 7, а) состоит из двух симметричных цепей (избиратель В с системой подвижных и неподвижных контактов, контакторы К у и К 2 и реактор Р). На схеме показано рабочее положение на одном из отводов обмотки РО. При необходимости перехода на другую ступень напряжения включением привода переключаются на соответствующие отводы контакты одной параллельной цепи, а затем другой в такой последовательности: размыкается контакт К1 (или К2) контактора, избиратель одной цепи переходит на нужный отвод обмотки РО, после чего контакт контактора замыкается (переход на другой отвод первой параллельной цепи окончен). Далее в той же последовательности осуществляется переход другой параллельной цепи на тот же отвод, на который перешел избиратель первой цепи. На этом цикл перехода с одного отвода на другой без разрыва цепи рабочего тока заканчивается. Реактор в этой схеме ограничивает ток в цепи "моста", когда одна параллельная цепь перешла на следующий отвод, а другая еще находится на предыдущем отводе. Рабочий ток реактора при этом не ограничивается, так как индуктивное сопротивление реактора практически равно нулю, потому что в каждой половине его обмотки рабочие токи, а соответственно и магнитное поле имеют противоположное направление.
Однофазные избиратели 3 (рис. 7, б) и реактор 4 крепятся на ярмовых балках. Контактная система избирателей работает без разрыва цепи тока, их контакты не подгорают, поэтому избиратели располагают на активной части трансформатора. Действие контакторов 2 сопровождается разрывом тока в параллельных цепях и возникновением дуги, поэтому контакторы располагают в отдельном отсеке, заполненном трансформаторным маслом. Это позволяет проводить осмотр и ремонт контакторов с заменой масла без вскрытия бака трансформатора.
Ремонт переключающего устройства ПБВ начинают с внимательного осмотра всех деталей. Особое внимание обращают на состояние рабочих поверхностей подвижных и неподвижных контактов, так как при длительной работе контактов в масле они покрываются тонкой пленкой желтоватого цвета, которая увеличивает переходное сопротивление в контактах, вызывая повышенный их нагрев и повреждение. Поэтому контакты старательно очищают, протирая технической салфеткой, смоченной в ацетоне или чистом бензине. Подгоревшие и оплавленные контакты заменяют новыми.
При ремонте переключающего устройства ПБВ подтягивают все крепежные детали, заменяют поврежденные пружины, изолирующие детали и прокладки, проверяют отсутствие заеданий в контактах и совпадение рабочих поверхностей подвижных контактов с неподвижными, устраняют также другие дефекты, обновляют надписи и обозначения на переключателе.
Полностью отремонтированный переключатель проверяют десятью циклами переключения по всем ступеням (цикл — это ход механизма от первого положения до последнего и обратно).
Ремонт переключающего устройства РПН значительно сложнее, чем переключателя ПБВ. Кроме очистки, промывки, протирки внутренних и внешних деталей, выполняют дополнительные работы, определяемые конструкцией отдельных частей переключателя и наличием большого числа контактов. Проверяют состояние поверхностей контактов избирателя ступеней, контакторов и электрической части приводного механизма (контактов контроллера, реле, конечных выключателей). Контакты всех элементов переключающего устройства, покрытые копотью и слегка оплавленные, зачищают и обпиливают, удаляя подгары и наплывы металла, контакты с металлокерамическим покрытием промывают, а сильно поврежденные — заменяют новыми.
В системе привода могут быть сверхдопустимые люфты, которые устраняют подтяжкой креплений и заменой деталей, имеющих разработанные отверстия и большой износ, а также регулировкой контактора и избирателя.
з<Ц.)

Круговая диаграмма переключающего устройства
(-5%) 1 5 (+5%)
Рис. 8. Круговая диаграмма переключающего устройства на 5 ступеней с регулировкой напряжения трансформатора ±2,5% номинального напряжения на одной ступени

Ремонт отдельных частей переключающего устройства РПН обусловлен необходимостью их разборки и сборки. В случае сборки и регулировки приводов руководствуются рисками, которые наносятся на соединяемые детали при изготовлении трансформатора на заводе. Ошибка в подключении отводов может стать причиной выхода из строя переключающего устройства, а следовательно, и трансформатора. Например, неправильное подключение реактора к контактору, нарушающее последовательность работы контактной системы. Во избежание ошибок в схеме подключения отводов после сборки, регулировки и визуальной проверки схемы соединений строят круговую диаграмму (рис. 8), которая показывает последовательность действия контактной системы переключателя, а также углы опережения и запаздывания при работе контактов контакторов и избирателя.
Построив круговую диаграмму последовательности действия контактов избирателя и контакторов при прямом и обратном ходах, по величине люфта судят о качестве сборки избирателя (если люфт меньше 16°, сборка считается удовлетворительной). Затем выполняют десять циклов переключений и если дефекты отсутствуют, считают, что переключающее устройство отремонтировано удовлетворительно и может быть установлено на трансформатор.

6. Ремонт вводов

В эксплуатации находится большое количество трансформаторов с армированными вводами для обмоток НН и ВН. Вводы трансформатора работают в тяжелых условиях. В то время, когда часть ввода, находящаяся внутри бака, нагревается до 70 °С, другая его часть, возвышающаяся над крышкой, может подвергаться воздействию отрицательной температуры (—35 °С и ниже), а также агрессивных веществ из атмосферы. На изоляторы вводов действуют атмосферные явления (грозовые разряды), в десятки и сотни раз превышающие номинальные напряжения трансформатора и даже испытательные напряжения изолятора. Наиболее часто в армированных вводах повреждаются армировочные швы в месте соединений фарфоровых изоляторов с металлическими фланцами. Это объясняется тем, что при воздействии на изолятор переменных температур в швах возникают значительные механические усилия, обусловленные различными коэффициентами расширения фарфора и металла. Разрушение швов может вызываться и электродинамическими силами. Они действуют на вводы, если через их стержни часто проходят токи короткого замыкания.
При ремонте трансформатора вводы тщательно осматривают. Если на поверхности изолятора имеется не более двух (на одной вертикальной линии) сколов площадью до 1см2 и глубиной до 1мм, дефектные места промывают, а затем покрывают двумя слоями бакелитового лака, просушивая каждый слой в сушильном шкафу при 50 - 60 °С. Изоляторы с большим количеством дефектов заменяют новыми.
Вводы, армированные швы которых разрушены не более чем на 30% по окружности, ремонтируют, очищая поврежденные участки и заливая их цементирующим составом. При значительных разрушениях армированного шва ввод переармируют. Для этого фасонным зубилом разрушают старую замазку и удаляют ее. Если замазка не поддается зубилу, ее предварительно смачивают 5 %-м раствором плавиковой или 30%-м раствором соляной кислоты. Работу с растворами кислот выполняют в защитных очках и перчатках из кислотоупорной резины.
Старую армировочную замазку ввода удаляют и путем разрушения после предварительного нагревания. Для этого ввод помещают в термошкаф и в течение 1,5 - 2ч выдерживают при 450 - 500°С, а затем легкими ударами по фланцу удаляют замазку.

Переармировку ввода (рис. 9) выполняют следующим образом. Очистив изолятор ввода от пыли и грязи, а его фланец от остатков старой замазки, собирают ввод и устанавливают его вертикально в приспособление, которое состоит из стальной нажимной плиты толщиной 5 мм, двух вертикальных стальных шпилек диаметром 10 - 12 мм с гайками и деревянной опорной плиты толщиной 40 - 50 мм. Далее приготавливают порцию цементирующей смеси (140 мае. ч. магнезита, 70 мае. ч. фарфорового порошка и 170 мае. ч. раствора хлорного магния) и вливают ее тонкой струей до полного заполнения пространства между изолятором и фланцем. После затвердевания замазки (12 - 15 ч) ввод освобождают из приспособления, очищают от брызг магнезита и окрашивают армированный шов нитроэмалью 642 или 1.201. Вводы армируют в помещении при температуре не ниже 10 °С.

Ремонт ввода трансформатора
Рис. 9. Ремонт ввода трансформатора: а — сборка; б — переармировка; I — колпачок; 2 — токопроводящий медный стержень; 3 — фарфоровый изолятор; 4 — резиновая маслостойкая прокладка; 5 — фланец; 6, 7 — гетинаксовая и стальная шайбы; 8 — гайка; 9, 11 — нажимная и опорная плиты; 10 — шпилька

Вводы трансформатора должны быть герметичны, поэтому переармированный ввод испытывают на специальном приспособлении: с помощью ручного гидравлического насоса создают избыточное давление (400кПа) трансформаторного масла, подогретого до 70 °С Продолжительность испытания составляет 30 мин.

7. Ремонт отводов

В трансформаторах с неисправными обмотками часто повреждается (частично или полностью) бумажно-бакелитовая изоляция отводов (обуглены отдельные места или вся изоляция отводов). Удаление поврежденной изоляции отводов осуществляется в такой последовательности: отсоединяют отвод от переключателя и обмотки; снимают с него поврежденную изоляцию; надевают новую бумажно-бакелитовую изоляционную трубку; соединяют отвод с обмоткой и вводом или контактом переключателя. Эти работы выполняет обычно обмотчик-изолировщик. Однако при тяжелых авариях трансформатора может быть повреждена не только изоляция, но и токопроводящий проводник отвода (оплавляется проводник отвода, нарушается пайка в месте соединения отвода с демпфером). В таких случаях повреждение устраняет электрослесарь, изготавливая новый отвод или восстанавливая соединение отвода с демпфером.
При нарушении соединения отвода с демпфером напильником очищают концы отвода и демпфера от остатков припоя, а затем соединяют пайкой. Соединение демпфера с шиной отвода может быть выполнено и сваркой.

8. Ремонт бака, крышки, расширителя, термосифонного фильтра и арматуры

Баки и крышки трансформаторов повреждаются редко. При ремонте трансформаторов проверяют состояние сварных швов бака, протекает ли масло из арматуры, целость резьбы крепежных деталей, наличие и состояние уплотняющих прокладок, крепление фланца предохранительной трубы на крышке, целость мембраны предохранительной трубы. Замеченные неисправности устраняют. Поврежденные участки сварного шва вырубают зубилом и, очистив от грязи и масла, сваривают вновь; протекание масла в местах соединения циркуляционных труб с баком устраняют чеканкой, а из пробкового крана — притиркой пробки абразивными порошками; крепежные детали (болты, гайки, винты) с сорванной резьбой заменяют новыми; уплотняющие резиновые прокладки заменяют прокладками из маслостойкой резины; поврежденную стеклянную диафрагму, установленную на предохранительной трубке, и прокладку, потерявшую упругость, заменяют новыми. Внутреннюю полость предохранительной трубы очищают от грязи, протирают тряпками и промывают чистым трансформаторным маслом. Поврежденную или потерявшую эластичность резиновую прокладку между фланцем предохранительной трубы и крышкой бака заменяют прокладкой, изготовленной из листа маслостойкой резины толщиной не менее 8 мм.
Расширитель, термосифонный фильтр, воздухоосушитель и маслозапорную арматуру разбирают, очищают от шлама и грязи, промывают в трансформаторном масле, а затем собирают. Покрытые ржавчиной поверхности очищают стальными щетками и окрашивают. В фильтрах и воздухоосушителях заменяют силикагель (свежим или восстановленным). Газовое реле, термометрический сигнализатор, пробивной предохранитель и другие контрольные и защитные приборы ремонтируют в соответствующих лабораториях (электротехнической, контрольно-измерительных приборов и др.).
Отремонтированные и изготовленные сборочные единицы и детали после проверок и испытаний поступают в отделение сборки.

9. Сборка трансформаторов

Сборку трансформатора начинают со сборки его основной части — каркаса (остова) магнитопровода. К месту работы доставляют полный комплект изолированных пластин, изоляционных деталей, приспособлений и инструмента и располагают в таком порядке, чтобы при выполнении операций не нужно было делать лишних движений.
Магнитопроводы в зависимости от габаритных размеров собирают на металлических столах, приспособлениях или кантователях.
Пластины собранного магнитопровода неплотно прилегают одна к другой, поэтому его сначала прессуют, устанавливая груз или стягивая пластины временными шпильками, а затем проверяют по всему периметру толщину магнитопровода. Надевают на стяжные шпильки бумажно-бакелитовые трубки, электрокартонные и стальные шайбы, навинчивают гайки и слегка стягивают. Затем устраняют неровности и прессуют магнитопровод до требуемого размера (равномерно закручивая гайки на шпильках). После этого к нижним ярмовым балкам крепят опорные планки. Полностью собранный магнитопровод стропят, поднимают, ставят вертикально на шпалы и устанавливают вертикальные прессующие шпильки.
После выполнения всех операций сборки магнитопровод осматривают, окончательно подтягивают шпильки, измеряют мегаомметром сопротивление изоляции ярмовых балок и шпилек по отношению к активной стали.
Полностью собранный магнитопровод доставляют в обмоточное отделение, где сначала расшихтовывают верхнее ярмо, устанавливают ярмовую изоляцию и изоляционные цилиндры, а затем насаживают обмотки на стержни и шихтуют верхнее ярмо.

При ремонте трансформаторов небольшой мощности в электроремонтном цехе магнитопровод собирают полностью (но без шихтовки верхнего ярма). На стержни такого магнитопровода насаживают обмотки НН и ВН. Изолируют их и только затем шихтуют верхнее ярмо и полностью собирают магнитопровод.
Заключительными операциями первого этапа сборки трансформатора являются сборка и соединение схемы обмоток.
Обмотки современных трансформаторов, применяемых в электроустановках промышленных предприятий, как правило, соединены "звездой" (в редких случаях — "треугольником"). Концы обмоток соединяют пайкой специальными паяльниками. После пайки участки соединений очищают от выступающих частиц припоя, изолируют лакотканью шириной 20 - 25 мм и покрывают лаком ГФ-95.
Для обеспечения высокой электрической прочности изоляции активную часть трансформатора подвергают сушке, в результате которой удаляется влага из его твердой изоляции. Существуют различные способы сушки трансформаторов (например, в специальном шкафу, инфракрасными лучами, методом индукционных потерь, токами короткого замыкания и др.).
После окончания сушки выполняют так называемую "отделку" активной части: подпрессовывают обмотку вертикальными шпильками верхнего и нижнего ярм магнитопровода. Затем проверяют сопротивление изоляции обмоток, стяжных шпилек и ярмовых балок и переходят к операциям второго этапа сборки трансформатора.
При сборке трансформаторов без расширителя, вводы которых расположены на стенках бака, сначала опускают активную часть в бак, устанавливают вводы, присоединяют к ним и переключателю отводы обмоток, а затем размещают крышку на баке.
Крышки трансформаторов мощностью до 560 кВ-А устанавливают на подъемных шпильках магнитопровода и снабжают необходимыми деталями, а более мощных — комплектуют отдельно и закрепляют на подъемных шпильках выемной части или баке. При этом особое внимание обращают на правильность установки уплотняющих прокладок, прочность затяжки гаек, правильность присоединения отводов к вводам и переключателю, уплотнения, исключающих протекание масла.
Активную часть с закрепленной на ней крышкой стропят за подъемные кольца тросами, поднимают краном и медленно опускают в бак, соблюдая меры предосторожности; монтируют крышку, равномерно затягивая болты по всему периметру; на крышке устанавливают кронштейны, на которых крепят расширитель с маслоуказателем; располагают предохранительную трубу; устанавливают реле и пробивной предохранитель.

После сборки трансформатора перед заполнением его маслом еще раз проверяют мегаомметром на 1000 В электрическую прочность изоляции обмоток. Затем трансформатор заполняют до требуемого уровня сухим трансформаторным маслом соответствующей электрической прочности, проверяют герметичность арматуры и установленных на крышке деталей, а также отсутствие течи масла из соединений и сварных швов.
Затем трансформатор подвергают электрическим испытаниям, объем и нормы которых установлены ГОСТом.

10. Очистка и сушка трансформаторного масла

Трансформаторное масло очищают от механических примесей и влаги с помощью специальных аппаратов — центрифуги и фильтр-пресса. Масло проверяют, периодически отбирая пробы из крана на выходном патрубке фильтр-пресса.
Устройство цеалитовой установки
Рис. 10. Устройство цеалитовой установки: I — вентиль; 2 — насос; 3 — электронагреватель масла; 4 — манометры; 5 — фильтры; 6 — адсорберы; 7 — верхний коллектор; 8 — кран для выпуска воздуха, 9 - объемный счетчик; 10 — кран для отбора проб и слива масла; 11  — нижний коллектор
Для повышения качества и электрической прочности трансформаторное масло сушат в цеолитовой установке (рис. 10). Сушка осуществляется фильтрованием масла через слой молекулярных сит, находящихся в адсорберах, которые заполнены гранулированным цеолитом. Фильтруемое масло подогревается электронагревателем.

Сушка в цеолитовой установке весьма эффективна, так как только за один цикл фильтрования позволяет увеличить пробивное напряжение масла с 8 - 10 до 50 кВ и выше. Такую установку для сушки трансформаторного масла применяют на больших ремонтных предприятиях в случае необходимости переработки большого количества масла.

11. Текущий ремонт силовых трансформаторов

Периодичность текущих ремонтов силовых трансформаторов (без подъема магнитопровода) определяется в соответствии с установленными нормами и зависит от их технического состояния.
При текущем ремонте масляного трансформатора его осматривают снаружи и устраняют выявленные дефекты, чистят изоляторы, бак и радиаторы, удаляют грязь из расширителя, доливают масло, проверяют маслоуказатель, спускной кран и уплотнения, надежность контактных соединений, берут пробу масла, проводят испытания и измерения.
В процессе осмотра проверяют герметичность уплотнений. Если она нарушена и имеется течь масла между крышкой и баком или фланцевыми соединениями, то подтягивают гайки. Если же это не помогает, уплотнения заменяют новыми, из маслостойкой резины.
Бак трансформатора и радиаторы очищают от пыли и масла, изоляторы протирают бензином. Удаляют грязь из расширителя и проверяют работу маслоуказателя. При необходимости доливают масло. Необходимо помнить, что температура доливаемого масла должна отличаться от температуры масла в трансформаторе не более чем на 5°С.
Затем проверяют воздухоосушитель. Если индикаторный силикагель имеет розовый цвет, его заменяют новым (голубым). Силикагель для повторного использования восстанавливают путем сушки: индикаторный — при 100 - 120 °С в течение 15 - 20 ч (до ярко-голубого цвета), гранулированный — при 400 - 500 °С в течение 2ч.
Перезарядка термосифонного фильтра выполняется, если кислотное число масла составляет 0,1мг КОН (по результатам испытания пробы масла). Для этого сливают масло из расширителя, снимают крышку фильтра, а затем решетку с силикагелем. Бывший в употреблении силикагель заменяют свежим, сухим. Установив крышку, заливают масло в расширитель, предварительно выпустив воздух из фильтра через пробку на его крышке. Масло доливают до соответствующей отметки на маслоуказателе расширителя в зависимости от температуры масла, которую контролируют термометром, установленным на крышке бака. В корпус оправы термометра также заливают трансформаторное масло.

При текущем ремонте сухого трансформатора необходимо снять кожух и удостовериться в отсутствии механических повреждений обмоток, изоляторов и других частей трансформатора, проверить надежность контактных соединений и заземлений, продуть трансформатор чистым сухим воздухом и протереть изоляторы.
По окончании ремонта замеряют сопротивление изоляции обмоток трансформатора R60" и определяют коэффициент абсорбции (отношение R60" и R15", где R60" — сопротивление изоляции через 60 с, R15" — через 15 с после начала измерения) мегаомметром на 2500 В. Сопротивление изоляции измеряют между каждой обмоткой и корпусом и между обмотками.

12. Ремонт измерительных трансформаторов

Текущий ремонт измерительных трансформаторов начинают с очистки их от пыли и грязи, затем осматривают фарфоровую, эпоксидную или другую изоляцию, проверяют надежность их крепления к конструкции, объем масла в баке и отсутствие течи в уплотнениях и сварных швах. Чтобы устранить течь масла, подтягивают скрепляющие болты. Если это не помогает, ставят новую прокладку из маслостойкой резины. Если масло протекает через сварные швы, трансформатор заменяют новым.
Проверяют надежность соединения трансформатора с контуром заземления, контактные соединения внешних проводов с трансформатором, соединения вторичных обмоток с "землей". При ремонте разборных трансформаторов тока проверяют отсутствие ржавчины на торцах магнитопровода. Для этого отсоединяют проводники, откручивают гайки скрепляющих болтов и разнимают половинки трансформатора. Ржавчину снимают шкуркой, половинки скрепляют болтами, стараясь, чтобы между ними не было воздушного зазора и кабель располагался в центре окна трансформатора.
В трансформаторах измеряют сопротивление изоляции, первичной обмотки — мегаомметром на 2,5 кВ, вторичной — на 1 кВ. Сопротивление изоляции не нормируется, однако для вторичных обмоток трансформатора тока сопротивление, равное 50 - 100 Мом, считается достаточным. Если сопротивление изоляции обмоток менее указанной величины, трансформатор снимают и сушат.
При капитальном ремонте трансформаторы тока (ТТ) и напряжения (ТН) испытывают повышенным напряжением. При замене трансформаторов в ходе ремонта проводят испытания, проверяют целость их обмоток, а также группы соединения трехфазных и полярность однофазных трансформаторов. Как известно, направление тока в обмотке амперметра переменного тока не оказывает влияния на точность его работы (при любом способе подключения амперметра к ТТ он будет давать правильные показания). В таких же приборах, как ваттметры, счетчики электроэнергии, а также многие устройства релейной защиты, направление тока имеет большое значение. Поэтому обмотки ТТ имеют специальную маркировку, позволяющую правильно подключать его в первичную цепь высокого напряжения и во вторичную измерительную цепь. Так, начало и конец первичной обмотки маркируются соответственно Л1 и Л2 (линия), а начало и конец вторичной обмотки — И1 и И2 (измерительная цепь тока). Выводы ТН маркируют следующим образом: начало и конец первичной обмотки обозначают соответственно А и X, а начало и конец вторичной обмотки — а и х. 

Схема проверки полярности измерительного трансформатора

Рис. 11. Схема проверки полярности измерительного трансформатора: GB — аккумулятор; S — рубильник; Р — гальванометр (поляример); w1,  w2 — первичная и вторичная обмотки

Целостность обмоток и правильность их соединения проверяют мегаомметром, а полярность определяют по схеме, показанной на рис. 11. При правильном обозначении выводов стрелка гальванометра (поляриметра) Р в момент замыкания рубильника 5 должна отклоняться вправо. Трансформаторы с неправильно обозначенными выводами отправляют для перемаркировки. При проверке целости вторичной обмотки закорачивают первичную обмотку, так как при разомкнутой первичной обмотке в ней будет наводиться электродвижущая сила большой величины, опасная как для человека, так и для изоляции обмотки.

13. Особенности ремонта сухих трансформаторов

При среднем ремонте сухих трансформаторов подпрессовывают обмотки и ярма магнитной системы, подтягивают все крепления, заменяют или ремонтируют изоляторы, вентиляторы и их электропроводку, кожух, зажимы и панель для переключения регулируемых ответвлений, чистят и продувают сухим сжатым воздухом все части и вентиляционные каналы, измеряют сопротивление изоляции обмоток, ярмовых балок, деталей прессовки обмоток и стяжки магнитной системы, красят кожух, шинные отводы и другие части, имеющие повреждения антикоррозийного покрытия, замеряют сопротивление обмотки постоянному току и коэффициент трансформации. При измерении сопротивления изоляции используют мегаомметр на 1000В. Сопротивление изоляции обмоток при 20 - 30 °С для трансформаторов с номинальным напряжением до 1 кВ должно быть не менее 100 МОм, более 1 до 6кВ — не менее 300 МОм, более 6кВ — не менее 500 МОм.
При капитальном ремонте перематывают или заменяют обмотки, ремонтируют каркас и его магнитную систему, детали главной изоляции, пере изолируют отводы, сушат, красят и запекают лаковое покрытие обмоток, а также выполняют все работы, относящиеся к среднему ремонту, включая электрические испытания.
Активную часть сухих трансформаторов сушат в шкафу или воздуходувкой.

14. Испытания силовых трансформаторов

Отремонтированные трансформаторы проходят контрольные (окончательные) испытания, которые должны подтвердить высокое качество выполненного ремонта, отсутствие дефектов, соответствие их характеристик паспортным значениям, а также требованиям ГОСТов:
• испытание трансформаторного масла;
• определение коэффициента трансформации и группы соединения обмоток;
• измерение сопротивления обмоток постоянному току;
• измерение токов, потерь холостого хода и короткого замыкания;
• измерение сопротивления изоляции обмоток;
• испытание электрической прочности главной изоляции повышенным напряжением промышленной частоты;
• испытание электрической прочности витковой изоляции индукционным напряжением.
Испытание трансформаторного масла осуществляют на электрическую прочность (пробой и диэлектрические потери). Для этого берут пробу масла (из бака трансформатора в чистую сухую стеклянную посуду не менее 0,5 л) и заливают ее в маслопробонный аппарат. Спустя 20 мин (за это время из масла выходят пузырьки воздуха) плавно повышают напряжение, наблюдая за стрелкой вольтметра, до пробоя. Выполняют 6 пробоев с интервалом 10 мин. Первый пробой не учитывается. Среднее арифметическое пробивного напряжения остальных пяти пробоев принимают за пробивное напряжение трансформаторного масла, которое должно быть не менее 25 кВ для трансформаторов с напряжением до 15 кВ включительно и не менее 30 кВ — с напряжением 15 - 30 кВ.
При ремонте выполняют и химический анализ масла, в результате которого определяют кислотное число, температуру вспышки паров, реакцию водной вытяжки, массу взвешенного угля и механических примесей. Одновременно проверяют прозрачность масла.
Схема измерения коэффициента трансформации
Рис. 12. Схема измерения коэффициента трансформации с помощью двух вольтметров с переключателями
Коэффициент трансформации проверяют по схеме, приведенной на рис. 12, чтобы убедиться в правильности числа витков, сборки схемы соединения обмоток и подключения отводов к переключателю. Одновременно подают напряжение (не менее 2% номинального) на все фазы трехфазного трансформатора и все ступени напряжения, отклонение но фазам не должно превышать 2 %.
При проверке группы соединения определяют правильность соединения обмоток и их соответствие группе.

Измерение сопротивления обмоток постоянному току позволяет выявить дефекты, допущенные при ремонте: обрыв параллельных проводников обмоток; низкое качество соединений пайкой; плохой контакт в месте присоединения отвода к переключателю и др. Перечисленные дефекты увеличивают сопротивление обмоток за счет  повышения переходного сопротивления на дефектных участках. Измеренные сопротивления по всем фазам и ступеням не должны различаться более чем на 2 %.
Измерение тока и потерь холостого хода проводят для выявления таких дефектов в магнитной системе трансформатора, которые увеличивают ток холостого хода и дополнительные потери, снижающие КПД трансформатора, а в отдельных случаях приводят к недопустимому нагреву. На обмотку НН подают симметричное напряжение частотой 50 Гц при разомкнутой обмотке ВН и плавно увеличивают его от нуля до номинального значения. При этом измеряют ваттметром мощность, потребляемую трансформатором, и амперметрами — линейные токи.
Допущенные при ремонте трансформатора неправильная транспозиция проводов, обрыв или надлом одного из параллельных проводов, плохой контакт и применение проводов заниженного сечения увеличивают омическое сопротивление обмоток и вызывают дополнительные потери энергии в них при нагрузке. Перечисленные дефекты выявляются путем проведения опыта короткого замыкания и сопоставления фактических и расчетных потерь в обмотках. При опыте короткого замыкания вводы обмоток НН трансформатора замыкают между собой, а к вводам обмоток ВН подают такое напряжение, при котором в обмотках устанавливаются номинальные токи. Измерение потерь энергии при опыте короткого замыкания сопоставляют с расчетными. Если они выше расчетных, значит в трансформаторе имеются неисправности.
Измерение сопротивления изоляции обмоток осуществляется мегаомметром между обмоткой ВН и баком при заземленной обмотке НН, обмоткой НН и баком при заземленной обмотке ВН, обмотками ВН и НН, соединенными между собой, и баком. Сопротивление изоляции обмоток трансформатора до 35 кВ считается удовлетворительным, если оно не менее 300 МОм для трансформаторов мощностью до 6300 кВ-А включительно и 600 МОм для трансформаторов 10 000 кВ-А и выше.
Испытание электрической прочности главной изоляции (между обмотками различных напряжений и каждой из них относительно заземленных частей трансформатора) повышенным напряжением промышленной частоты заключается в том, что от специального трансформатора с регулируемым напряжением подают повышенное напряжение (25 кВ для трансформаторов 6кВ, 35 кВ — 10 кВ, 85 кВ — 35 кВ) частотой 50 Гц на исследуемые обмотки трансформатора. Если в течение 1 мин с момента подачи испытательного напряжения амперметр не показывает увеличения тока, а вольтметр — уменьшения напряжения и внутри трансформатора нет потрескиваний, напряжение снижают до нуля и считают, что трансформатор выдержал испытание.
Испытание электрической прочности витковой изоляции индуктированным напряжением проводят таким образом: к обмотке НН при разомкнутой обмотке ВН и заземленном баке трансформатора подают от генератора испытательное напряжение: 115 % номинального — при магнитопроводе шпилечной конструкции, 130% — при бесшпилечной конструкции. Трансформатор считается выдержавшим испытание, если в течение 1 мин не наблюдаются скачки тока, разряды и другие явления, свидетельствующие о повреждении изоляции.

1. По каким признакам различают силовые трансформаторы?
2. С какой целью применяют измерительные трансформаторы?
3. Как устроен силовой трехфазный двухобмоточный трансформатор?
4. Наиболее характерные неисправности трансформаторов и возможные причины их возникновения.
5. Основные операции, производимые при разборке трансформатора.
6. В чем заключается ремонт магнитопровода трансформатора?
7. Каким образом выполняют ремонт вводов и переключающего устройства трансформатора?
8. Способы сушки активной части трансформатора.
9. В чем заключается ремонт сухих и измерительных трансформаторов? 
10. Основные послеремонтные испытания трансформаторов.

| Создай свой интернет-магазин бесплатно!